Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-452160

RESUMO

In the first wave of the COVID-19 pandemic (April 2020), SARS-CoV-2 was detected in farmed minks and genomic sequencing was performed on mink farms and farm personnel. Here, we describe the outbreak and use sequence data with Bayesian phylodynamic methods to explore SARS-CoV-2 transmission in minks and related humans on farms. High number of farm infections (68/126) in minks and farm related personnel (>50% of farms) were detected, with limited spread to the general human population. Three of five initial introductions of SARS-CoV-2 lead to subsequent spread between mink farms until November 2020. The largest cluster acquired a mutation in the receptor binding domain of the Spike protein (position 486), evolved faster and spread more widely and longer. Movement of people and distance between farms were statistically significant predictors of virus dispersal between farms. Our study provides novel insights into SARS-CoV-2 transmission between mink farms and highlights the importance of combing genetic information with epidemiological information at the animal-human interface.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20198838

RESUMO

The current SARS-CoV-2 pandemic has rapidly become a major global health problem for which public health surveillance is crucial to monitor virus spread. Given the presence of viral RNA in feces in around 40% of infected persons, wastewater-based epidemiology has been proposed as an addition to disease-based surveillance to assess the spread of the virus at the community level. Here we have explored the possibility of using next-generation sequencing (NGS) of sewage samples to evaluate the diversity of SARS-CoV-2 at the community level from routine wastewater testing, and compared these results with the virus diversity in patients from the Netherlands and Belgium. Phylogenetic analysis revealed the presence of viruses belonging to the most prevalent clades (19A, 20A and 20B) in both countries. Clades 19B and 20C were not identified, while they were present in clinical samples during the same period. Low frequency variant (LFV) analysis showed that some known LFVs can be associated with particular clusters within a clade, different to those of their consensus sequences, suggesting the presence of at least 2 clades within a single sewage sample. Additionally, combining genome consensus and LFV analyses we found a total of 57 unique mutations in the SARS-CoV-2 genome which have not been described before. In conclusion, this work illustrates how NGS analysis of wastewater can be used to approximate the diversity of SARS-CoV-2 viruses circulating in a community.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...